
12

+ SaL |!SbT |
[

cosφb

(

(1 + cos2 θ)F 1
LT + (1 − cos2 θ)F 2

LT + sin 2θ cosφF cos φ
LT + sin2 θ cos 2φF cos 2φ

LT

)

+ sinφb

(

sin 2θ sinφF sin φ
LT + sin2 θ sin 2φF sin 2φ

LT

)]

+ |!SaT |SbL

[

cosφa

(

(1 + cos2 θ)F 1
TL + (1 − cos2 θ)F 2

TL + sin 2θ cosφF cos φ
TL + sin2 θ cos 2φF cos 2φ

TL

)

+ sinφa

(

sin 2θ sinφF sin φ
TL + sin2 θ sin 2φF sin 2φ

TL

)]

+ |!SaT | |!SbT |
[

cos(φa + φb)
(

(1 + cos2 θ)F 1
TT + (1 − cos2 θ)F 2

TT + sin 2θ cosφF cos φ
TT + sin2 θ cos 2φF cos 2φ

TT

)

+ cos(φa − φb)
(

(1 + cos2 θ) F̄ 1
TT + (1 − cos2 θ) F̄ 2

TT + sin 2θ cosφ F̄ cos φ
TT + sin2 θ cos 2φ F̄ cos 2φ

TT

)

+ sin(φa + φb)
(

sin 2θ sinφF sin φ
TT + sin2 θ sin 2φF sin 2φ

TT

)

+ sin(φa − φb)
(

sin 2θ sinφ F̄ sin φ
TT + sin2 θ sin 2φ F̄ sin 2φ

TT

)]}

. (57)

In Eq. (57) 48 structure functions show up which exactly matches with the number of the Vi defined in Section III.
The structure functions again depend on the three variables Pa ·q, Pb ·q, and q2, i.e., F 1

UU = F 1
UU (Pa ·q, Pb ·q, q2)

and so on. We refrain from giving the explicit relations between the structure functions in (57) and the Vi because
these lengthy formulae are not needed for the following discussion. In order to shorten the notation in (57) we left
out indices for the angles which characterize the lepton momenta and the transverse spin vectors of the hadrons.
There is yet another reason for omitting those indices: the form of the angular distribution in (57) holds for
any dilepton rest frame and not just the CS frame. The numerical values of the structure functions of course
change when going from one frame to another. Furthermore, note that the components of the spin vectors can be
understood in different frames like the rest frame of one of the hadrons, the cm-frame, or a dilepton rest frame.

In particular for the angular distribution of the unpolarized cross section different notations can be found in
the literature (see, e.g., [35] and references therein). Here we just quote the frequently used formula

dN

dΩ
≡

dσ

d4q dΩ

/

dσ

d4q
=

3

4π

1

λ + 3

(

1 + λ cos2 θ + µ sin 2θ cosφ +
ν

2
sin2 θ cos 2φ

)

. (58)

One readily finds

λ =
F 1

UU − F 2
UU

F 1
UU + F 2

UU

, µ =
F cos φ

UU

F 1
UU + F 2

UU

, ν =
2 F cos 2φ

UU

F 1
UU + F 2

UU

. (59)

The socalled Lam-Tung relation [33, 34, 37]

λ + 2ν = 1 , (60)

which in terms of the structure functions defined in (57) reads

F 2
UU = 2 F cos 2φ

UU , (61)

has attracted considerable attention in the past. This relation is exact if one computes the DY process to
O(αs) in the standard collinear perturbative QCD framework. Even at O(α2

s) the numerical violation of (60) is
small [38]. On the other hand data for π− N → µ− µ+ X taken at CERN [39, 40] and at Fermilab [41] are in
disagreement with the Lam-Tung relation. In particular, an unexpectedly large cos 2φ modulation of the cross
section was observed, and in the meantime different explanations for this phenomenon have been put forward in
the literature [42, 43, 44, 45, 46, 47, 48]. In Ref. [31] it was pointed out that intrinsic transverse motion of initial
state partons might be responsible for the observed violation of the Lam-Tung relation. In the following section
we will briefly return to this point in connection with the parton model calculation. It is also worthwhile to
mention that more recent Fermilab data on proton-deuteron Drell-Yan do agree with the Lam-Tung relation [49].

The hadronic tensor given in Section III also allows one to find the angular distribution of the cross section for
the specific kinematical point qT = 0. Altogether, in that case one has nine independent angular dependences


